Calculus I	Name:
Study Guide 14	Class:
Due Date:	Score:

No Work \Leftrightarrow No Points

Use Pencil Only \Leftrightarrow Be Neat & Organized

1. Given $f(x) = x^2 - 2x - 3$. (a) (2 points) Find f'(x)

(b) (2 points) Solve $f'(x) = 0$	(a)
(c) (2 points) Find the points on the graph of $f(x)$ where $f'(x) = 0$	(b)
(d) (2 points) Find $f''(x)$	(c)
(e) (2 points) Solve $f''(x) = 0$	(d)
(f) (2 points) Find the points on the graph of $f(x)$ where $f''(x) = 0$	(e)

(f) _____

- 2. Given $f(x) = x^3 6x^2 + 5$. (a) (2 points) Find f'(x)

 - (f) (2 points) Find the points on the graph of f(x) where f''(x) = 0
- 3. Suppose x = x(t) and y = y(t), differentiate both sides with respect to t, then solve for $\frac{dy}{dt}$. (a) (2 points) $x^3 + y^2 = 75$

(a) _____

(f) _____

(b) (3 points)
$$\frac{1}{x} + \frac{1}{y} = 1$$

4.	Given	f(x) =	$x^{4} +$	$2x^3 - 1$
	(a) (2	points)	Find	f'(x)

(b)	(2	points) Solve	f'(x)) = 0

(c) (2 points) Find the points on the graph of f(x) where f'(x) = 0

(d) (2 points) Find f''(x)

(e) (2 points) Solve f''(x) = 0

(b) _____

(a) _____

(b) _____

(c) _____

(d) _____

Total Points: 50

(f) (2 points) Find the points on the graph of f(x) where f''(x) = 0

(f) _____

- 5. Suppose v = v(t), r = r(t), and h = h(t). Differentiate both sides with respect to t, then solve for $\frac{dr}{dt}$.
 - (a) (3 points) $v = \pi r^2 h$

(b) (3 points)
$$v = \frac{4\pi r^3}{3}$$

(b) _____

(a) _____

(c) (3 points)
$$v = \frac{\pi r^2 h}{3}$$

(c) _____